Right-Invariance: A Property for Probabilistic Analysis of Cryptography based on Infinite Groups

Eonkyung Lee Sejong University, Korea

	Finite-group-based cryptography (late 1970s \sim)	Infinite-group-based cryptography (early 1980s \sim)
Types of schemes	Various	A few (e.g. KAP, PKE)
Provably secure schemes	Many	None

Q. Why is not cryptography fruitful in infinite groups as in finite groups?

- An impediment is connected with probability.
 c.f.) The uniform distribution is popularly used in finite groups, but not available in infinite groups.
- **Our motivation.** In infinite-group-based cryptography, probability has not been seriously discussed.

Our Results

- (1) Choose a probability-theoretic property, right-invariance, from finite groups; and formalize the notion in arbitrary groups.
- (2) Explore right-invariance property in infinite groups.
- (3) Discuss probability measures for right-invariance and show application.

A Property Widely Used in Cryptography

Right-invariance of finite groups

- $\Pr[\mathcal{A}(p, g, g^X) = X] = \Pr[\mathcal{A}(p, g, g^X g^r) = X + r] \quad \forall r \in \mathbb{Z}_{p-1}$
- Usage: random self-reducibility, ZK proofs, PRF, PKE, HCP, ...

Generalization to arbitrary groups

- $\Pr[f(X) = 0] = \Pr[f(Xr) = 0] \quad \forall r \in G$
- It is true if G is finite and X has the uniform distribution.
 But, it is not always true if G is infinite.

A mathematical framework for correct, appropriate use of it in infinite groups is needed.

Warming up for Measure-theoretic Approach

Def. A collection \mathcal{M} of subsets of X is a σ -algebra in X if

(i) X ∈ M,
(ii) E ∈ M implies X − E ∈ M,
(iii) E₁, E₂, ... ∈ M implies ∪_{i=1}[∞] E_i ∈ M.
(X, M) is a measurable space, E ∈ M is a measurable set in X.
e.g.) 2^X: atomic σ-algebra in X
Def. μ : M → [0, 1] is a probability measure on M if

$$\mu(X) = 1$$
 and $\mu(\prod_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$

 (X, \mathcal{M}, μ) is a probability space.

Formalizing Right-invariance in Measure Theory

Def. For a probability space (G, \mathcal{G}, P)

(a) $E \in \mathcal{G}$ is right-invariant if for any $r \in G$

$$Er = \{xr \mid x \in E\} \in \mathcal{G} \text{ and } P(Er) = P(E).$$

(b) (G, \mathcal{G}, P) (or P) is right-invariant if every measurable set is right-invariant.

Our Results

- (1) Formalize the notion of right-invariance property in arbitrary groups.
- (2) Explore right-invariance property in finitely generated infinite groups analyzing the structure of their σ -algebra.
- (3) Discuss probability measures for right-invariance and show application.

$\sigma\text{-algebra}$ in Infinite Groups

Let G be a finitely generated infinite group and \mathcal{G} a σ -algebra in G.

- **Def.** For $x \in G$, $M_{\mathcal{G}}(x) = \bigcap_{x \in A \in \mathcal{G}} A$.
- Property of $M_{\mathcal{G}}(x)$
 - (a) $M_{\mathcal{G}}(x)$ is the smallest measurable set containing x.
 - (b) Every measurable set is partitioned into $M_{\mathcal{G}}(x)$'s.

Right-invariance of Infinite Groups

Let G be a finitely generated infinite group and \mathcal{G} a σ -algebra in G. **Def.** \mathcal{G} is right-closed if $\forall A \in \mathcal{G}, \ \forall x \in G, \ Ax = \{ax \mid a \in A\} \in \mathcal{G}.$ **Property of** $M_{\mathcal{G}}(1_G) \stackrel{\text{def}}{=} M_{\mathcal{G}}$. The following are equivalent.

(a) \mathcal{G} is a right-closed σ -algebra in G.

(b)
$$M_{\mathcal{G}}(x) = M_{\mathcal{G}}x$$
 for any $x \in G$.

(c) $M_{\mathcal{G}}$ is a subgroup of G, and \mathcal{G} is generated by its right cosets.

Theorem. (G, \mathcal{G}, P) is right-invariant iff $M_{\mathcal{G}}$ is right-invariant.

Our Results

- (1) Formalize the notion of right-invariance property in arbitrary groups.
- (2) Explore right-invariance property in finitely generated infinite groups.
- (3) Discuss probability measures for right-invariance in two cases (ideal, practical), and show application.

Ideal Measure

Q. What are concrete examples of probability measure which is both useful and practical for right-invariance?

For a group G, to get a right-invariant probability measure

- is easy on a single right-closed σ -algebra \mathcal{G} with $[G:M_{\mathcal{G}}] < \infty$,
- is meaningful on all right-closed σ -algebras \mathcal{G} with $[G:M_{\mathcal{G}}] < \infty$.
- **Def.** P defined on $(G, 2^G)$ is universally right-invariant on G if P(H) = P(Hx) for any finite-index H < G and any $x \in G$.

Note. Most of interesting infinite groups

- are finitely generated, and
- have infinitely many finite-index subgroups.
- e.g.) free groups, groups of automorphisms of free groups, braid groups, ...
- **Theorem.** If G is a finitely-generated group with infinitely many finite-index subgroups, then G has no universally right-invariant probability measure.

Therefore, as a probability measure for right-invariance, we have to use alternatives to the universally right-invariant probability measure.

Given a group G, a good alternative may be P on $(G, 2^G)$ such that for any right-invariant $(G, \mathcal{G}, P_{\mathcal{G}})$ and for any $E \in \mathcal{G}$

$$|P(E) - P_{\mathcal{G}}(E)|$$

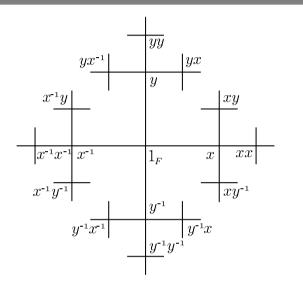
is "small".

- $|P(E) P_{\mathcal{G}}(E)|$ will be presented in the factors coming from the characteristics of G, \mathcal{G} , P.
- We view P as a family $P = \{P_{\alpha}\}_{\alpha \in \mathcal{A}}$.

Our alternative. A family of probability measures $P = \{P_{\alpha}\}_{\alpha \in \mathcal{A}}$ on $(G, 2^G)$ such that for any right-invariant $(G, \mathcal{G}, P_{\mathcal{G}})$ and for any $E \in \mathcal{G}$

$$\lim_{\alpha \to \alpha_0} |P_\alpha(E) - P_\mathcal{G}(E)| = 0.$$

Examples of Our Alternative



Cayley graph $C(F, \{x, y\})$

• F: free group generated by a finite set X

- W_s : no-return random walk on C(F, X) with stopping probability 0 < s < 1
 - $-W_s$ generates all words of F.
 - The longer the word is, the lower its occurrence probability is.

e.g.1. $\mu_s(w) = \Pr[W_s \text{ walks from } 1_F \text{ to } w].$ e.g.2. $\bar{\mu}_k(w) = \begin{cases} 0 & \text{if } w \in B_k = \{w \in F \mid |w| \le k\}, \\ \frac{\mu_s(w)}{\mu_s(F-B_k)} & \text{otherwise.} \end{cases}$ **Property of** $\mu = {\mu_s}_{0 \le s \le 1}$ [Woess, Borovik-Myasnikov-Remeslennikov] For any right-invariant $(G, \mathcal{G}, P_{\mathcal{G}})$ and for any $E \in \mathcal{G}$,

 $\lim_{s \to 0} |\mu_s(E) - P_{\mathcal{G}}(E)| = 0.$

Property of $\bar{\mu} = {\{\bar{\mu}_k\}}_{k \in \mathbb{N}}$ [Park, Borovik-Myasnikov-Shpilrain] If $(G, \mathcal{G}, P_{\mathcal{G}})$ is both left- and right-invariant, or if $(G, \mathcal{G}, P_{\mathcal{G}})$ is right-invariant and $M_{\mathcal{G}}$ includes a finite-index normal subgroup of G, then for any $E \in \mathcal{G}$

$$\left|\bar{\mu}_k(E) - P_{\mathcal{G}}(E)\right| = o(e^{-k}).$$

Application: Braid-group-based Cryptography

 B_n : non-commutative infinite group with (n-1)-generators Decisional Diffie-Hellman problem (D-DHP) in B_n

- Given $(a, w_{\ell}^{-1}aw_{\ell}, w_{u}^{-1}aw_{u}, x_{u}^{-1}x_{\ell}^{-1}ax_{\ell}x_{u})$,
- Distinguish $x_u^{-1}x_\ell^{-1}ax_\ell x_u$ from $w_u^{-1}w_\ell^{-1}aw_\ell w_u$, where $a \in B_n, w_\ell, x_\ell \in B_\ell, w_u, x_u \in B_u$.

 B_{ℓ}, B_u : subgroups of B_n commuting with each other

• $w_{\ell}w_{u} = w_{u}w_{\ell} \in B_{\ell}B_{u} = \{xy \mid x \in B_{\ell}, y \in B_{u}\}$

Gennaro-Micciancio's Algorithm

Gennaro-Micciancio proposed how to solve the D-DHP in B_n (2002). **Idea.** Easy to compute $\pi(w_u)$ from $(a, w_u^{-1}aw_u)$

- Symmetric group on *n*-letters, S_n , has (n-1)-generators
- There is a natural projection $\pi: B_n \to S_n$

Algorithm \mathcal{A} : Let $a \in B_n$ with $\pi(a) \neq 1_{S_n}$.

• Input: $(a, w_{\ell}^{-1}aw_{\ell}, w_{u}^{-1}aw_{u}, x_{u}^{-1}x_{\ell}^{-1}ax_{\ell}x_{u})$

• Output
$$\begin{cases} 1 & \text{if } \pi(x_u^{-1}x_\ell^{-1}ax_\ell x_u) = \pi(w_u^{-1}w_\ell^{-1}aw_\ell w_u) \\ 0 & \text{otherwise} \end{cases}$$

Computing the Success Probability

Success probability that \mathcal{A} solves the D-DHP in B_n

$$\Pr_{X \in B_{\ell}B_{u}}[\pi(X^{-1}aX) \neq \pi(w_{u}^{-1}w_{\ell}^{-1}aw_{\ell}w_{u})] = \Pr_{X \in B_{\ell}B_{u}}[X \in H].$$

Step 1. Construct a σ -algebra, \mathcal{B} , in $B_{\ell}B_u$ such that

- (i) ${\cal B}$ is right-closed,
- (ii) $H\in \mathcal{B}$,
- (iii) $[B_\ell B_u : M_\mathcal{B}] < \infty.$

Step 2. Define a probability measure P on $(B_{\ell}B_u, \mathcal{B})$.

- Let F be a free group with (n-2)-generators.
- There is a natural projection $\phi: F \to B_{\ell}B_u$.
- Let $\bar{\mu}_k$ be the atomic probability measure on F induced by W_s .
- $P = \bar{\mu}_k \circ \phi^{-1}$

Success probability of $\mathcal{A} = P(H)$ depends on $a \in B_n$.

• Upper bound: $1 + o(e^{-k}) - ((\frac{n}{2})!)^{-2}$

• Lower bound:
$$1 - o(e^{-k}) - \begin{cases} 8/n(n-2) & \text{for } n \ge 10, \\ 1/3 & \text{for } n = 8, \\ 1/2 & \text{for } n = 6. \end{cases}$$

Conclusions

For right-invariance of infinite groups, we showed

- (1) it corresponds to the uniform distribution over all the right cosets of some finite-index subgroup,
- (2) how to use it for a given situation,
- (3) non-existence of universally right-invariant probability measure,
- (4) alternatives to universally right-invariant probability measure (Application: To evaluate success probability of an attack).